

Welcome to snake’s documentation!

This is a simple snake game. The original purpose was to create a game
for use with reinforcement learning, but the game can be played
in the terminal by humans. If you want to use the game for
reinforcement learning you only need SnakeGame. This will
create a self-contained instance of a game of snake which can be
interacted with programatically.

When the game is run in the terminal it is wrapped by GameIO,
which captures keyboard input and sends it to SnakeGame and
also writes the state of the game to the screen.

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 snake	

 	
 	
 snake.game	

 	
 	
 snake.game_io	

Index

 _
 | G
 | Q
 | R
 | S

_

 	
 	__init__() (GameIO method)

 	(SnakeGame method)

G

 	
 	GameIO (class in snake.game_io)

 	get_apple() (SnakeGame method)

 	get_board_size() (SnakeGame method)

 	
 	get_snake() (SnakeGame method)

 	get_snake_length() (SnakeGame method)

 	get_snake_velocity() (SnakeGame method)

 	get_walls() (SnakeGame method)

Q

 	
 	queue_snake_movement_direction() (SnakeGame method)

R

 	
 	run() (SnakeGame method)

 	
 	run_stepwise() (SnakeGame method)

S

 	
 	snake (module)

 	snake.game (module)

 	
 	snake.game_io (module)

 	SnakeGame (class in snake.game)

snake

	snake package
	Submodules
	snake.game module

	snake.game_io module

	Module contents

snake.game module

Holds the snake game.

The only thing necessary to run a game of snake is SnakeGame.

	
class SnakeGame(board_size, walls, random_seed)

	Bases: object

Represents a game of snake.

The game can be run with run(), or stepwise with
run_stepwise(). The game runs in a self
contained loop and will not take input from the keyboard or
display itself on the screen. The game is interacted with purely
programatically. However, you can write code that captures keyboard
input and sends it to the game. You can also write code that looks
at the state of the game, as contained in this class, and writes
it to the screen. GameIO does both of these things.

The snake is controlled by setting its movement direction. This can
be done with queue_snake_movement_direction(). The user will
use this method to queue which direction the snake will move, the
next time the snake takes a step. The queue allows the user
to queue several steps ahead, which results in the game feeling
more responsive when played.

SnakeGame can be initialized with walls, allowing the
user to create a level.

If you want to interact with the game in an automated way
you can do something like

def get_next_direction(game):
 # This is a user-defined function which decides on the
 # direction the snake should take on the next turn.

 ...

def apply_action(game):
 # This is a user-defined function which looks at the
 # state of the game an decides on sending actions to it.

 direction = get_next_direction(game)
 game.queue_snake_movement_direction(direction)

game = SnakeGame(
 board_size=(23, 34),
 walls=((1, 1), (2, 2), (3, 3)),
 random_seed=12,
)

for step_number in game.run_stepwise():
 apply_action(game)

Methods

	get_apple(self)

	Return the coordinates of the apple.

	get_board_size(self)

	Return the board size.

	get_snake(self)

	Yield the positions occupied by the snake.

	get_snake_length(self)

	Return the length of the snake.

	get_snake_velocity(self[, step])

	Return the step the snake will take.

	get_walls(self)

	Yield the coordinates of the walls.

	queue_snake_movement_direction(self, direction)

	Queue a movement direction for the snake.

	run(self)

	Run the game.

	run_stepwise(self)

	Run the game, but yield after every step.

	
__init__(self, board_size, walls, random_seed)

	Initialize a SnakeGame.

	Parameters

	
	board_size (tuple) – A tuple of the form (23, 12) which represents
the size of the board in the x and y directions.

	walls (iterable of tuple) – An iterable holding the position of every
wall segment.

	random_seed (int) – The random seed to be used with the game. Used to generate
apple locations.

	
get_apple(self)

	Return the coordinates of the apple.

	Returns

	A tuple of the form (21, 12), holding the
coordinates of the apple the snake is meant to eat.

	Return type

	tuple

	
get_board_size(self)

	Return the board size.

	Returns

	A tuple of the form (23, 12) which represents
the size of the board in the x and y directions.

	Return type

	tuple

	
get_snake(self)

	Yield the positions occupied by the snake.

	Yields

	tuple – The position of a segment of the snake’s body.

	
get_snake_length(self)

	Return the length of the snake.

	Returns

	The length of the snake.

	Return type

	int

	
get_snake_velocity(self, step=0)

	Return the step the snake will take.

	Parameters

	step (int, optional) – The step for which the velocity is returned. 0 is the
current step.

	Returns

	The tuple can be one of (0, 1), (0, -1),
(1, 0) or (-1, 0), representing the step the
snake will take.

	Return type

	tuple

	
get_walls(self)

	Yield the coordinates of the walls.

	Yields

	tuple – The position of a wall segment.

	
queue_snake_movement_direction(self, direction)

	Queue a movement direction for the snake.

When this method is called multiple times between snake steps,
it allows the caller to queue multiple directions, which will
be resolved at a rate of one per step.

	Parameters

	direction (str) – Can be 'up', 'down', 'right' or 'left' to
signify the movement direction the snake will have the
when it moves.

	Returns

	True if a movement direction was successfully queued
and False otherwise.

	Return type

	bool

	
run(self)

	Run the game.

	Returns

	None

	Return type

	NoneType

	
run_stepwise(self)

	Run the game, but yield after every step.

	Yields

	int – The step number.

snake.game_io module

	
class GameIO(game, speed=0.1, player_name='player', score_file='scores')

	Bases: object

Controls the game’s input and output.

This class should simply be initialized, it won’t return until the
SnakeGame has finished, see example below.

Examples

game = SnakeGame(
 board_size=(25, 25),
 walls=(),
 random_seed=12,
)

Take over IO and run the game.
GameIO(game)

	
__init__(self, game, speed=0.1, player_name='player', score_file='scores')

	Initialize an instance of GameIO.

	Parameters

	
	game (SnakeGame) – An instance of the snake game for which the io is being
controlled.

	speed (float) – The time between game steps.

	player_name (str, optional) – The name of the player, used to write the name into the
_score_file.

	score_file (str, optional) – The path to a file which keeps track of scores.

snake package

Submodules

	snake.game module

	snake.game_io module

Module contents

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to snake’s documentation!

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

